Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2024): Bravo's: Jurnal Program Studi Pendidikan Jasmani dan Kesehatan

Cross-Sectional BMI Dan Glukosa Darah Terhadap Kadar IGF-1 Pada Anak Usia 10-11 Tahun

Submitted
July 11, 2024
Published
2024-10-03

Abstract

Penelitian ini merupakan penelitian cross-sectional BMI (Bodi Massa Indeks) dan glukosa darah terhadap hormon IGF-1 pada anak anak usia 10-11 tahun. Penelitian ini menggunakan metode Korelasional Product momen dengan pendekatan cross-sectional, subjek ditentukan dari kriteria inklusi dan eksklusi dan subjek pada penelitian ini terdiri dari 20 anak laki-laki. Pengukuran kadar glukosa darah dengan metode Drabkin dan pengukuran kadar IGF-1 serum menggunakan Enzyme-Linked Immunosorbent Assay (ELISA). Pengambilan darah darah kapiler dari vena sebanyak 3 cc. dan dianalisis di laboratorium faal. Hasil data akan dianalisis dengan uji normalitas dan korelasi product momen menggunakan SPSS 25 dengan pertimbangan signifikansi 95%. Hasil penelitian ini menunjukkan bahwa ada hubungan yang signifikan antara variabel BMI (Bodi Massa Indeks) dengan Glukosa darah P-value 0,000 (P<0,05), tidak ada hubungan antara glukosa darah dengan IGF-1 P = 0,199 (P>0,05) dan ada hubungan antara variabel BMI dengan IGF-1 nilai p-value 0,020 (P<0,05). Kesimpulan pada penelitian ini bahwa ada hubungan positif antara variabel BMI dan glukosa, serta ada hubungan antara BMI dan kadar IGF-1. Dan tidak ada korelasi antara glukosa darah dan kadar serum IGF-1.

References

  1. Adwinda, M. D., & Srimiati, M. (2019). Hubungan lingkar perut, konsumsi gula dan lemak dengan kadar glukosa darah pegawai direktorat Poltekkes Kemenkes Jakarta II. Nutrire Diaita: Jurnal Gizi - Dietetik, 11(1), 7–17.
  2. Alderete, T. L., Byrd-Williams, C. E., Toledo-Corral, C. M., Conti, D. V., Weigensberg, M. J., & Goran, M. I. (2011). Relationships between IGF-1 and IGFBP-1 and adiposity in obese African-American and latino adolescents. Obesity, 19(5), 933–938. https://doi.org/10.1038/oby.2010.211 DOI: https://doi.org/10.1038/oby.2010.211
  3. AsghariHanjani, N., & Vafa, M. (2019). The role of IGF-1 in obesity, cardiovascular disease, and cancer. Medical Journal of the Islamic Republic of Iran, 33(1), 1–4. https://doi.org/10.34171/mjiri.33.56 DOI: https://doi.org/10.47176/mjiri.33.56
  4. Ashpole, N. M., Logan, S., Yabluchanskiy, A., Mitschelen, M. C., Yan, H., Farley, J. A., Hodges, E. L., Ungvari, Z., Csiszar, A., Chen, S., Georgescu, C., Hubbard, G. B., Ikeno, Y., & Sonntag, W. E. (2017). IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. GeroScience, 39(2), 129–145. https://doi.org/10.1007/s11357-017-9971-0 DOI: https://doi.org/10.1007/s11357-017-9971-0
  5. Badan Penelitian Dan Pengembangan Kesehatan Republik Indonesia. (2018). Laporan Riskesdas 2018 Nasional.pdf. In Lembaga Penerbit Balitbangkes (p. hal 156).
  6. Chen, H.-T., Chung, Y.-C., Chen, Y.-J., Ho, S.-Y., & Wu, H.-J. (2017). Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. Journal of the American Geriatrics Society, 65(4), 827–832. https://doi.org/https://doi.org/10.1111/jgs.14722 DOI: https://doi.org/10.1111/jgs.14722
  7. Cuestas, E., Hillman, M., Galetto, S., Gaido, M. I., Sobh, V., Damico, L. T., & Rizzotti, A. (2023). Inflammation induces stunting by lowering bone mass via GH/IGF-1 inhibition in very preterm infants. Pediatric Research, 94(3), 1136–1144. https://doi.org/10.1038/s41390-023-02559-5 DOI: https://doi.org/10.1038/s41390-023-02559-5
  8. Danarsih. (2023). Hubungan Antara Indeks Massa Tubuh dan Kadar Hemoglobin pada Remaja Putri. Jurnal Indonesia Sehat, 2(2), 53–58.
  9. Dichtel, L. E., Corey, K. E., Haines, M. S., Chicote, M. L., Kimball, A., Colling, C., Simon, T. G., Long, M. T., Husseini, J., Bredella, M. A., & Miller, K. K. (2022). The GH/IGF-1 Axis Is Associated With Intrahepatic Lipid Content and Hepatocellular Damage in Overweight/Obesity. The Journal of Clinical Endocrinology and Metabolism, 107(9), e3624–e3632. https://doi.org/10.1210/clinem/dgac405 DOI: https://doi.org/10.1210/clinem/dgac405
  10. Filus, A., & Zdrojewicz, Z. (2014). Insulinopodobny czynnik wzrostu-1 ( IGF-1 ) – budowa i rola w organizmie człowieka Insulin-like growth factor-1 ( IGF-1 ) – structure and the role in the human body. Pediatr Endocrinol Diabetes Metab, 161–169. DOI: https://doi.org/10.18544/PEDM-20.04.0016
  11. Fornari, R., Marocco, C., Francomano, D., Fittipaldi, S., Lubrano, C., Bimonte, V. M., Donini, L. M., Nicolai, E., Aversa, A., Lenzi, A., Greco, E. A., & Migliaccio, S. (2018). Insulin growth factor-1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects. Eating and Weight Disorders, 23(3), 375–381. https://doi.org/10.1007/s40519-017-0362-4 DOI: https://doi.org/10.1007/s40519-017-0362-4
  12. Fowke, J. H., Matthews, C. E., Yu, H., Cai, Q., Cohen, S., Buchowski, M. S., Zheng, W., & Blot, W. J. (2010). Racial differences in the association between body mass index and serum IGF1, IGF2, and IGFBP3. Endocrine-Related Cancer, 17(1), 51–60. https://doi.org/10.1677/ERC-09-0023 DOI: https://doi.org/10.1677/ERC-09-0023
  13. Jo, A., & Mainous, A. G. (2018). Informational value of percent body fat with body mass index for the risk of abnormal blood glucose: A nationally representative cross-sectional study. BMJ Open, 8(4), 1–7. https://doi.org/10.1136/bmjopen-2017-019200 DOI: https://doi.org/10.1136/bmjopen-2017-019200
  14. Kjaer, T. W., Grenov, B., Yaméogo, C. W., Fabiansen, C., Iuel-Brockdorff, A.-S., Cichon, B., Nielsen, N. S., Filteau, S., Briend, A., Wells, J. C. K., Michaelsen, K. F., Friis, H., Faurholt-Jepsen, D., & Christensen, V. B. (2021). Correlates of serum IGF-1 in young children with moderate acute malnutrition: a cross-sectional study in Burkina Faso. The American Journal of Clinical Nutrition, 114(3), 965–972. https://doi.org/https://doi.org/10.1093/ajcn/nqab120 DOI: https://doi.org/10.1093/ajcn/nqab120
  15. Mameli, C., Krakauer, N. Y., Krakauer, J. C., Bosetti, A., Ferrari, C. M., Moiana, N., Schneider, L., Borsani, B., Genoni, T., & Zuccotti, G. (2018). The association between a body shape index and cardiovascular risk in overweight and obese children and adolescents. PLoS ONE, 13(1), 1–12. https://doi.org/10.1371/journal.pone.0190426 DOI: https://doi.org/10.1371/journal.pone.0190426
  16. Mohamad, M. I., & Khater, M. S. (2015). Evaluation of insulin like growth factor-1 (IGF-1) level and its impact on muscle and bone mineral density in frail elderly male. Archives of Gerontology and Geriatrics, 60(1), 124–127. https://doi.org/https://doi.org/10.1016/j.archger.2014.08.011 DOI: https://doi.org/10.1016/j.archger.2014.08.011
  17. O’Neill, B. T., Lauritzen, H. P. M. M., Hirshman, M. F., Smyth, G., Goodyear, L. J., & Kahn, C. R. (2015). Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis. Cell Reports, 11(8), 1220–1235. https://doi.org/10.1016/j.celrep.2015.04.037 DOI: https://doi.org/10.1016/j.celrep.2015.04.037
  18. Raharjo, S., Pranoto, A., Rejeki, P. S., Harisman, A. S. M., Pamungkas, Y. P., & Andiana, O. (2021). Negative correlation between serum brain-derived neurotrophic factor levels and obesity predictor markers and inflammation levels in females with obesity. Open Access Macedonian Journal of Medical Sciences, 9, 1021–1026. https://doi.org/10.3889/oamjms.2021.6840 DOI: https://doi.org/10.3889/oamjms.2021.6840
  19. Raisingani, M., Preneet, B., Kohn, B., & Yakar, S. (2017). Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis. Growth Hormone and IGF Research, 34, 13–21. https://doi.org/10.1016/j.ghir.2017.04.003 DOI: https://doi.org/10.1016/j.ghir.2017.04.003
  20. Rasmussen, M. H., Frystyk, J., Andersen, T., Breum, L., Christiansen, J. S., & Hilsted, J. (1994). The impact of obesity, fat distribution, and energy restriction on insulin-like growth factor-1 (IGF-1), IGF-binding protein-3, insulin, and growth hormone. Metabolism, 43(3), 315–319. https://doi.org/https://doi.org/10.1016/0026-0495(94)90099-X DOI: https://doi.org/10.1016/0026-0495(94)90099-X
  21. Sherlala, R. A., Kammerer, C. M., Kuipers, A. L., Wojczynski, M. K., Ukraintseva, S. V, Feitosa, M. F., Mengel-from, J., Zmuda, J. M., & Minster, R. L. (2021). Relationship Between Serum IGF-1 and BMI Differs by Age. 76(7), 1303–1308. https://doi.org/10.1093/gerona/glaa282 DOI: https://doi.org/10.1093/gerona/glaa282
  22. Smith, S. M., Boppana, A., Traupman, J. A., Unson, E., Maddock, D. A., Chao, K., Dobesh, D. P., Brufsky, A., & Connor, R. I. (2021). Impaired glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID-19. Journal of Medical Virology, 93(1), 409–415. https://doi.org/10.1002/jmv.26227 DOI: https://doi.org/10.1002/jmv.26227
  23. Wardana, Z. S., Sari, G. M., & Tinduh, D. (2020). The Relation Between IGF-1 Levels and Fasting Blood Glucose in Obese Women. STRADA Jurnal Ilmiah Kesehatan, 9(1), 140–146. https://doi.org/10.30994/sjik.v9i1.276 DOI: https://doi.org/10.30994/sjik.v9i1.276
  24. Yuliani, W., & Supriatna, E. (2023). Metode Penelitian Bagi Pemula. 1–59.

Downloads

Download data is not yet available.